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Convergence of Block Spins Defined by a Random Field 
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We study the asymptotic behavior of families of dependent random 
variables called "block spins," which are associated with random fields 
arising in statistical mechanics. We give sufficient conditions for these 
families to converge weakly to products of independent Gaussian random 
variables. We also estimate the error terms involved. In addition we give 
some conditions which imply that the block spins can converge weakly only 
to families of normal or degenerate random variables. Central to our proofs 
is a mixing property which is weaker than strong mixing and which holds 
for many random fields studied in statistical mechanics. Finally we give a 
simple method for determining when a stationary random field does not 
satisfy a strong mixing property. This method implies that the two-dimen- 
sional Ising model at the critical temperature is not strong mixing, a result 
obtained by a different method by M. Cassandro and G. Jona-Lasinio. The 
method also shows that a stationary, mean-zero, positively correlated 
Gaussian process indexed by [~ is not strong mixing if its covariance function 
decreases like t-~, 0 < ~ < 1. 

KEY WORDS: Block spins; random field; mixing random variables; Ising 
model. 

1. I N T R O D U C T I O N  

Let Z a, d />  1, denote the integer lattice points  in d-dimensional  Euclidean 

space. Throughou t  this paper  d( . ,  -) will denote Euclidean distance in Z a 

and  I1" EI will denote cardinali ty.  
Let (X(n)),~z~ be a r a n d o m  field, i.e., an  array of r andom variables 

indexed by Z a and  defined on  some probabi l i ty  space (s ~ P).  We will 
assume here that  f2 = Na ~-  is the e-algebra generated by finite-dimensional  
cylinder sets, and,  for o) ~ f~ and  n E Z a, X(n)(o)) = X(n, oJ) = ~o(n). F o r  a 

given positive integer N we wish also to consider the reduced lattice obtained 

1 Texas A&M University, College Station, Texas. 

673 

0022-4715[8010600.0673503.00]0 �9 1980 Plenum Publishing Corporation 



674 Carla C. Neaderhouser 

by breaking Z a into disjoint d-dimensional cubes of side N and relabeling 
these blocks in a natural way. Thus for n = (nz . . . . .  na) ~ Z a we define the 
block BN(n) by 

B~(n) = {m~Za[Nn~ <<, m, < N(n, + 1), 1 ~< i~< d} (1.1) 

Clearly, as N--> o% ]IBN(n)][ ~ N a for each n. We now define for each N a 
new family of random variables (or a new random field) (XN(n))n~z ~ by setting 

XU(n) = ~ X(m), n e Z  a (1.2) 
m~BN(n) 

The random variables defined by (1.2) will be called the (Nth-step) block spins. 
The study of the family of block spins is motivated by examples from 

statistical mechanics, notably the Ising model/~-6,12~ The possible limit distri- 
butions of these families are thought of a s "  fixed points" for certain renormal- 
ization transformations, ~12~ and it is conjectured that these limit distributions 
must be normal above the critical temperature but that nonnormal limits may 
occur at the critical temperature. This behavior is a result of increasing 
dependence among the X(n) as the critical temperature is approached, where 
the dependence is best described as a type of "mixing." 

Def in i t i on  1. For A c Z a let ~ denote the sub-~-algebra of Y" 
generated by the cylinder sets over A. We say the measure P [or the associated 
family X(n)] satisfies a strong mixing condition if there exists a function 
, :  [1, oo) --> (0, oo), a(t) ~ 0 as t --> 0% such that whenever A, B c Z a with 
d(A, B)  = t, E E o~'A, and F ~ ~ ,  

(Ms) IP(EF) - P(E)P(F) I  < a(t) 

We say that P [or the family of X(n)] satisfies a mixing condition if the previous 
statement holds with (Ms) replaced by 

(M) [P(EF) - P (E)P(F) I  <~ a(t)HAl] 

In Ref. 8 it is shown that for a random field satisfying a mixing condition 
similar to (Ms), with A and B parallel hyperplanes, the limits of the block 
spins, if they exist, must be independent and normally distributed. In Ref. 6 
some sufficient conditions for convergence are given and the behavior of the 
block spins at the critical temperature for d = 2 is determined under some 
very strong conjectures. No estimates of error terms are given in these papers. 
Behavior at the critical temperature, including the failure of (Ms) in d = 2, 
is also discussed in Ref. 1. In this paper we study the block spins of random 
fields satisfying (M), a condition introduced in Refs. 3 and 9. Using (M) 
enables us to make estimates about the error terms involved, for example, 
since we can consider more varied types of subsets than the hyperplanes c o n -  
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sidered in the mixing condition used in Ref. 8. The criterion for determining 
when (M) is satisfied (Theorems 2 and 5, Ref. 3) is also relatively easy to 
verify for a wide range of models. 

In Section 2 we show that i f (M) holds with a(t) ~ 0 rapidly enough, then 
the block spins must converge weakly to the product of independent Gaussian 
random variables. In Section 3, for a stationary random field, we find a 
sufficient rate of decay for (M) to imply that the weak limits of the block spins, 
if they exist, must be normal or degenerate. Finally in Section 4 we use the 
exact calculation of the correlation function of the two-dimensional Ising 
model at the critical temperature, ~ together with a lemma from Ref. 10, 
to show that property (M~) does not hold for this model. (Another proof  of 
this result may be found in Ref. 1.) We also give some one-dimensional exam- 
ples in which (M~) fails, even though covariance terms E[X(0) - E ( x o ) ) ]  x 
[X(n) - E(X(n ) ) ]  decrease to zero as n --> or. 

2. CONVERGENCE OF THE BLOCK SPINS 

We need the following fundamental lemma, the proof  of which may be 
found in Ref. 2: 

L e m m a  2.1. Suppose (M) holds. Let A, B c Z a with d(A,  B ) =  t, 

f e  o~A, g e ~ ,  and llf[Iv < oo, [[ g Jlq < 0% where the norms are with respect to 
the measure P. I fp ,  q, r > 1 and l ip  + 1/q + 1/r = 1, then 

I g ( f g )  - g ( f ) g ( g ) [  <, [4~(t)lJA IlJ1/rlrfI]~]] g Tr~ 

I f p  = q = or, then 

I E ( f g )  - E ( f ) E ( g ) [  < 4~(t)[lA[l ]lf]l=ollgHoo 

Now, for N/> 1 and n e Z  a let XN(n) be defined by (1.2). Then (XN('))Na~ is 
a sequence of random functions on the space Z e and, following Ref. 7, we say 
the X N converge weakly to a random function ( Y(n)),~za if for each p > 1 and 
n~ .... , n v E Z e the joint distribution function of (XN(n~),..., XN(np)) converges 
to the joint distribution function of (Y(n,),..., Y(n~)). We assume throughout 
this section that E(X(n)) = 0 for n e Z a. We assume also that either 

o r  

UX(n)H~ ~< c < o o  f o r a l l n e Z  a 
and (M) is satisfied with a(t)  << t -a -v  for some v > 0 

EIX(n)l 2+~ ~< C <  ov for someO < 8 < 1 and a l l n e Z  a 

f( and (M) is satisfied with ~ m + e ) ( t ) t a - ~  dt < oo 

(2.1) 

(2.2) 
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Clearly Lemma 2.1 and either (2.1) or (2.2) imply that for A c Z a 

~A x(n) ~<< I/All (2.3) E 

Now for each N/> 1 and n e Z a let ~BN(n) denote the usual topological 
boundary of BN(n) and for 0 < e < 1 set 

OeBN(n) = {In e BN(n)ld({m}, OBN(n)) ~< N'} 

so that 

[le,Oqn)ll << g a-1+" (2.4) 

k e m m a  2.2. Suppose (X(n))n~z~ satisfies the above conditions. Suppose 
there exist constants (CN(n))n~Z~,N~I, such that for each N >i 1 and n e Z a 

Cqn) >> N ~/2 (2.5) 

and the sequence XN(n)/CN(n) converges weakly to a random variable ]7(n). 
Then the sequence of random functions (~N(n))n~za defined by ~N(n)=  
XN(n)/CN(n) converges weakly to the random function (Y(n))~z d where, for 
n e Z a, Y(n) has the same distribution function as Y(n) and the Y(n) are 
independent. 

Proof. For n e Z a and t e R let gn(t) be the characteristic function of 
Y(n). Then it suffices to show that i fp  >/ 1, nl ..... np e Z  a, and h .... , tp e R, 

E@xp [1 , , ,p  C N ( n J ) ] j o  l~j~ g~,(tj) (2.6) 

The standard method of proving the corresponding result when the X(n) are 
independent and the f(n)  are normal, for example, is to rearrange the 
summands and then to appeal to the one-dimensional central limit theorem 
(Ref. 7, p. 19), but in our case we can make better use of the mixing assump- 
tion if we proceed more directly. Let 0 < e < 1 and 

X(n) XN(nJ) ZN(nj) (2.7) 
z~(n3 = ~, c~(n;) , w~(n3 = CN(n3 

ne~BN(nt) 

Now, by (2.3)-(2.5), 

E(ZN(nj.)) e = o(1) as N---> oo 

and thus by a modification of the standard proof for p = 1 we have 

+p i t~'XN(nY)] "~ E < e x p i [ l ~ s t j W N ( n j ) ] } + o ( 1 ) ( 2 . 8 )  

and a fortiori 

itjXN(nj)] 
E exp ~ ] = E[exp itjWN(nj)] + o(1) (2.9) 
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Finally, since for any j # j '  the sites involved in the definition of WN(nj) are 
all at least distance 2N ' away from any site involved in the definition of 
WN(n/) and since by (2.1) or (2.2), if we choose E close enough to 1, a ( N O N  a = 

o(1) as N - +  0% we can apply Lemma 2.1 a total o f p  - 1 times to give 

E{exp [l~<j~<ptjWN(nJ)-l'~ - ~ E [ e x p  itjWN(n3)] 
i ~ CN(nj) J J  ~-<J-<v L CN(ns) ] = 0(1) (2.10) 

Now clearly (2.8)-(2.10) imply (2.6). 
Letting (r denote an independent family of normal random 

variables with E(O(n)) = 0 and E(O(n)) 2 = 1 for each n e Z a, we can show 
the following result: 

Theorem 2.3. Suppose E ( X ( n ) ) =  0 and E]X(n)]5 ~< C < oo for 
n e Z a, (M) is satisfied with 

f ~ < ov (2.11) allS(t)t2a-1 dt 

and there exist C and R > 0 such that i fA  _c Z a and IIAII R, 

E X(n) /> CIIAII (2.12) 

Set 
E~,, = E[XN(n)] 2 (2.13) 

Then the sequence of  random functions 

(XN(n)/XN,,).~z',~.> 1 

converges weakly to 

Proof .  By a slight modification of the proof of Theorem (3.3) in Ref. 16 
we can show that for each n, X~C(n)/ZN,n converges weakly to qb(n). Since 
(2.12) implies (2.5), we can then apply Lemma 2.2. 

Let us note that by Lemma 2.1 and (2.1) or (2.2), condition (2.12) is 
satisfied, for example, if the X(n) are stationary with E ( X ( k ) X ( n ) )  >>. 0 for 
k ,  n e Z  a and ] E ( X ( k ) X ( n ) ) l  << a(d((k), {n})) for a(.)  as in (2.1) or (2.2). This 
is the case, for example, for the Ising model above the critical temperature if 
the interaction potential is assumed to be positive, since we may take a(t )  = 

e -Bt for some/3 > 0 (see Ref. 8 and the discussion in Ref. 16, Section 5, for 
example). 

For uniformly bounded X(n) we can do slightly better: 

Theorem 2.4. SupposeE(X(n))  = 0and  HX(n)[[~ ~< C < ~ f o r n ~ Z  a. 
Suppose (M) is satisfied with a(t) << t -~a-r  /x t -3 for some E > 0 and suppose 
(2.12) holds. Then the conclusion of Theorem 2.3 is valid. 
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Proof. We need only combine the conclusion of Theorem (3.4) of Ref. 17 
with our Lemma 2.2. 

Results similar to Theorems 2.3 and 2.4 are contained in Ref. 6, but no 
estimates of error terms are given there. Here we do obtain some estimates. 
Note that for the rectangle sets which we consider the error terms we find are 
essentially independent of the relative positions of the sites nl,..., np. 

T h e o r e m  2.5. Suppose E(X(n)) = 0 and ElX(n)[ 5 ~< C < ~ for n ~ Z  a, 
NN,n is defined by (2.13), and (2.12) holds. Suppose (M) is satisfied with ~(t) = 
e -Bt for some/3 > 0. Let ni,..., np ~ Z  a and set ~ = minl.<j<~p d({nj}, {nk}). 
If for each n e Z a we let F~ be the distribution function of a normal, mean-0, 
variance-l, random variable, then for each xl ..... x v ~ R, as N--> m, 

P(XZC(n~)/Zu,,,j < xj ,  1 <~ j <~ p) - Fnl(x~) ... Fn,(x v) 

I N  sIl~ if d > 1 (2.14) 
= O N_l l  B if d =  1 

Proof. By Theorem (3.1) of Ref. 17 the result is true fo rp  = 1. Now for 
1 ~< j ~< p let ZU(nj) and mN(nj) be defined by (2.7), where C~(n~) = ZN.nj and 

= E(N) will be chosen below. Then for ~(N) > 0, which will also be chosen 
below, and for x~ ,..., xp E ~, 

p(XN(nj)/ZN,,,j < Xj, 1 <~ j <~ p) 
i 

\ 

: P I X ~ ( n 3 / Z ~ , . ,  < x .  1 ~ j <<. p, max IZ~(n~)l < ~(U)) 
\ / 

+ ~ P(XN(nj)/ZN,., < Xy, t <<.j<~p, 
J.<~j<<.p 

[z~(n,)[ < ~(U),  1 ~ i < j, [Z~(n,)] >~ ~(N)) 

=P(WN(nj)  < xj + ~7(N), 1 < ~ j < p )  

+ 

Now if we set /~N(nj) = BN(nj) -- a~(mBN(nj), WN(nj) ~ o~(ns),  1 <<. j <~ 1), 
and therefore applying (M) a total o f p  - 1 times gives 

P(WV(nj) < x~- + ~7(N), 1 ~< j <p) 

= 1--[ p(WN(nj) < xj + ~(U)) + O(pUaa(23Ur (2.16) 

Now if we set ~;~,~j = E[Y,N,njWN(n3] 2, then Z~,~ = ~;~,~[1 + o(1)]. This 
together with Theorem (3.1) of Ref. 17 implies 

p(WN(n~) < x~ + v(N))  

~/N-S/~~ + o(1)], d >  1~ 
= r=,(xr + ~?(N)) + O [ N _ ~ / ~ [ 1  + o(1)1, d = 

(2.17) 
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Now setting ~(N) = N -3/1~ and c(N) = 1/I0 and combining (2.15)-(2.17) 
gives the desired result. 

We can obtain results analogous to Theorem 2.5 but with a larger error 
term if we relax the requirement that the mixing be exponential. For  example, 
if the hypotheses of Theorem 2.5 hold with ~(t) satisfying (2.11) or if the 
hypotheses of Theorem 2.4 hold we can use Theorem (3.2) or Theorem (3.4) 
of Ref. 17 to obtain an estimate like (2.16) and thus a remainder term of 
N-1/8. Estimate (2.14) can, of course, be used to approximate the distribution 
function of 

max [XN(nj)/ZN,,,] 

Other results in Ref. 17 can also be applied to the block spins, for example 

Proposition 2.6. For  nl ..... n~ E Z a and N >/ 1 let tN(nj) = 2E~,,, x 
log(log 23,w). Suppose the hypotheses of Theorem 2.5 hold and (aN(l) .... , aN(p)) 
is a sequence of vectors with nonzero entries such that for 1 ~< j ~< p, 
(tN(nj))lJ2 = o(aN(j)) as N--->oo. Then as N---~oo the sequence (XN(nl)/ 
aN(l),..., XN(nv)/aN(p)) converges a.s. to the zero vector. 

Proof. For p = 1 this is just Corollary (3.10) of Ref. 17. Now for 
1 ~<j ~ p l e t  

A s = {co : XN(nj)/aN(j)) -~  O) 

Clearly P((.Jl<.s<.p Aj) = 0 and, for oJ ~ ((.Jl-<s.<~ A3 ~ X~(nj, oO/aN(j) -+ 0 
f o r l  <~ j <<. p. 

3, C O N V E R G E N C E  TO A STABLE L A W  

Here we determine conditions on the mixing function ~ which imply that 
one block spin, if it converges weakly, must converge to a normal law. From 
Ref. 11, Theorem (18.1.1), it follows that for d = 1 and (X(n))n~z identically 
distributed, (Ms) being satisfied with any ~(t) --> 0 is sufficient to imply that 
sums (X(1) + ... + X(N)) /BN - AN, BN -+ 0% can only converge weakly to 
a stable or a degenerate distribution. Furthermore, if the limit distribution is 
stable with exponent ~, then BN = N1/~h(N), where h(N)  is slowly varying as 
N - +  oo, Similar results are obtained in Ref. 8 for random fields satisfying 
conditions like (Ms), but it is necessary to assume that certain "boundary  
terms" also behave properly. The conditions we impose on the function ~(.) 
and on the moments of the X(n) have the effect of ensuring that these boundary 
terms do behave properly. Working with (M) instead of (Ms) means the 
conditions on c~(.) must be even more stringent. Our Theorem 3.2 below deals 
with only one block spin. We point out in Corollary 3.3 that it can be com- 
bined with Lemma 2.2 to give information about the joint distributions of any 
(finite) number of block spins. The replacing of  the blocks BN(O) by d- 
dimensional rectangles in Theorem 3.2 may seem somewhat unnatural at 
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first glance, but it is unavoidable, since rectangles, not cubes, are the funda- 
mental building blocks for measurable sets if d > 1. The use of rectangles 
instead of cubes is not really much of a change. If we consider the case of 
convergence to a normal law, for example, it is clear that the proofs in Section 
2 of this paper and in Ref. 17 can easily be made valid for any sequence of 
d-dimensional rectangles f' Z a in such a way that the rates of growth in any 
two directions are proportional. The proper normalizing constant in these 
cases is determined by the fact that for a rectangle R 

Def in i t i on  3.1. The array (X(n))n~zd will be called strictly stationary if 
for all p /> 1 and nl,..., np, n e Z a, both (X(nl),...,X(n~)) and (X(nl + n) .... , 
X(np + n)) have the same joint distribution functions. 

Theorem 3.2. Suppose (X(n))n~za is strictly stationary with E] X(0)[ 2 + 0 
< oo for some 3 > 0. Suppose (M) is satisfied with 

c~(t) << t-a/v (3.1) 
for s o m e 0 <  v <  1. 

Suppose there exists a function f :  {1, 2, 3,...} ---> R withf j"  and 

f ( N  a) >> N (a-l+v'~/2 (3.2) 

where v < v' < 1. Suppose also that there is a nondegenerate distribution 
function F(x)  such that for any sequence of d-dimensional rectangles RN I' Z a 
there is a sequence (A(RN)) with FRN(X), the distribution functions of 

converging weakly to F(x).  Then F(x)  is normal. Furthermore, if BN(0) is 
defined as in (1.1), 

f(ll B N(0)II) = II B N(0)[I 1 2h(11B  (0)II) (3.3) 

where h(y)  is slowly varying as y -+ oo. 

ProoL Let B~r= BN(0) as in (1.1). For  any rectangle R let S~ = 
S.,~R X(n)  and let FR be the distribution function of SR. Choose v", 

v < v" < v' (3.4) 

and let C N be the rectangle obtained by adding to B ~ those sites n e Z d with 

N <~ n~ < [N + N~"], 0 ~ < n ~ < N ,  2 <~ i <~ d 

Let D M be obtained by translating B M so that [ N +  N ~"] < n, < 
[N + N ~" + M]. LetfN = T(IlB~II) a n d f u  =f(llB ll), Now by Lemma 2.1 
wi thp = q =  2 + 8 

- SR l << N 
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and thus 

f y  I(Sc~ - SBN) -+ 0 in probability as N--> oo 

Now as in the proof  for d = 1 (p. 316, Ref. 11), we can show that for any 
a~, a2 > 0 there is a sequence M ( N )  --~ co with 

lim fM(m/f~ = az/a2 
N - +  r 

For bl, b2 e N set 

YN = a f ~ ( f Y ~ S n  ~ - AB ~ -- b~) 

and 

f'N = ( fM(N) /a l fN) ( f~} ) (Sc%v M'N' -- Sc ~ -- AM(m -- b2)) 

Clearly 

YN + 7~ = ( ( a l f ~ ) - l S o % S N ,  - A~ ' )  - (a l f~ ) -~(So~  - S ~ )  

and 

Thus by (M) and stationarity the distribution function of Yu + Yu differs 
from 

F,N(a lx  + b l ) *  FDM'N>((alfN/fM(m)X + b2) 

by at most I1BNI[~(N ~") = o(1). By the definition of C N the distribution func- 
tion of YN + YN approaches F ( a x  + b) for some constants a and b. Thus 
F ( x )  is stable. Now suppose F ( x )  has exponent a. To show (3.3) we need only 
show that for any positive integer k 

lim f(!IB~N(O)II)/f(HBN(O)II) = U TM (3.5) 
N - ~ .  r 

Let v" be as in (3.4). Now B~N(0) is obtained by putting together k a copies of 
BN(0). Label these copies BN,~ ..... BN,~a, and for 1 ~< i ~< k a let 

B~,, = BN,, - { n e Z a :  d(OBz~,~,{n}) < N~"), 

B~,~ = B~,~ - B k ,  

and 

n~BN,( 

Now, since by Lemma 2.1 withp = q = 2 + 8 

E X(.)[ 
II~BN. l 

i~<~<~--i 

<< k a N  a-  1 + v" = o(fu2) 
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the distribution function of 

f~'~ ~ ~:j--AB ~u 

approaches the same limit as the distribution function of 

- 1  ,~N ~ Jr(n) - AB~N 
n~B~N(0) 

wherefkN --- f(II B k~ []). Furthermore, the ~j are identically distributed. By (M), 

E expi t  ~ ,  - ~ E expf~N] 

and thus for each t, if r  is the characteristic function of S~/f~ - AR,  

I ] r  - [ r  - ~  0 

as N --> oo. But the stability of F implies 

lim ]~b,N(t)l = exp(--clt]~), c > 0 
N ~ o 0  

Thus we must have 

lira ( fN/ fks)~k  a = 1 
N--* co 

and so we have shown (3.5). Finally by Lemma 2.1 with p = q = 2 + 3 

E[X~(0)p << N a 

Thus if F has exponent a < 2, we must have E[XN(O)]~/f~ 2 ~ 0 as N--~ oo 
and so F would be degenerate, which is a contradiction. 

Corollary 3.3. If  (X(n)),~z~ is strictly stationary with EIjr(0)[ 2+~ < oo 
for some 3 > 0, if (3.2) holds, and if the block spins, normalized by constants 
fBN, w i t h f a s  in (3.3), converge weakly to a nondegenerate random function, 
then the limit distributions must be independent and normal. 

Proof .  We need only combine the proofs of Theorem 3.2 and Lemma 2.2. 

4. S O M E  E X A M P L E S  

In this section we give some examples of families which do not satisfy the 
strong mixing condition (M~) even though the covariances E ( X ( O ) X ( n ) )  
decrease to zero as d({O}, {n}) --~ oo. We start by giving a simple criterion for 
determining when strong mixing is violated. 
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Lemma 4.1. Suppose (X(n))n~z~ is strictly stationary with E(X(O)) = 0 

and EIX(O)I 2+~ < oo for some 8 > 0. Let X N = XN(0) as in (1.2). Suppose 
there is an ~ > 0 with 

E(XU) 2 >> X a+" (4.1) 

Then the X(n) do not satisfy (Ms). 

Proof. We can easily modify the proof  of  Lemma (1.8) of  Ref. 10 to 
show that if the X(n) are strongly mixing and satisfy all the hypotheses of  
Lemma 4.1 except for (4.1), then we must have E ( X N )  2 ~ Nab(N),  where 
h(N) is slowly varying as N - +  oo. 

Example 4.2. Let d = 2 and consider the Ising model with positive 
nearest neighbor interactions at the critical temperature. By results in Refs. 14 
and 15, E(X(O)X(n))  ..~ d({0}, {n}) -1/4. Thus E(XN) 2 ,.~ N ~/~ and so (4.1) 
holds with E = 3/4. (Because the interaction potential is assumed positive, 
E(X(O)X(n))  >1 0 for all n. This is discussed in Ref. 16, for example.) A 
different p roof  that strong mixing does not hold for this model may be found 
in Ref. 1. 

E x a r n p l e 4 . 3 ,  Fix ~, 0 < c~ < 1. Consider a stationary, mean-0 
Gaussian sequence (X(n)),~z with covariance function 

p(n) = 1/(1 + Inl0  

[By Polya's condition (Ref. 13, p. 70), p is a characteristic function and thus 
positive definite and therefore there is a Gaussian process with this co- 
variance function.] Clearly in this case 

and thus this sequence cannot be strong mixing. 
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